Bilgisayar Bilimleri

Bilgisayar Bilimleri

Evrişimsel Sinir Ağları ve Transfer Öğrenme Yaklaşımı Kullanılarak Altın Fiyat Yönünün Tahmini

Yazarlar: ["Yahya ALTUNTAŞ", "Fatih OKUMUŞ", "Fatih KOCAMAZ"]

Cilt - , Sayı Cilt: Vol:7 Sayı: Issue:2 , 2022 , Sayfalar -

Konular:-

DOI:10.53070/bbd.1205299

Anahtar Kelimeler:Finansal zaman serisi tahmini,Algoritmik ticaret,Fiyat yön tahmini,Derin öğrenme,Evrişimsel sinir ağları.

Özet: Finansal zaman serisi tahmini ile finansal varlıklar için doğru alım-satım kararları vererek karlılığın arttırılması amaçlanmaktadır. Finansal varlıkların fiyatları pek çok faktörden etkilenen kırılgan bir yapıdadır. Bu nedenle, finansal zaman serisi tahmini uzun yıllardır farklı disiplinlerden araştırmacılar tarafından ilgi gören oldukça zorlu bir görevdir. Bu çalışmada, günlük ons altın fiyat yönünün tahmini için 2007 – 2021 yıllarını kapsayan 15 yıllık tarihsel fiyat verisi kullanılmıştır. Altın fiyat verileri mum grafikleri ve teknik analiz göstergeleri yardımıyla grafik görüntülere dönüştürülmüştür. Bu sayede altın fiyat yön tahmini 2-sınıflı görüntü sınıflandırma problemine indirgenmiştir. Görüntülerin sınıflandırılması için öncü ön-eğitimli evrişimsel sinir ağı modellerinden AlexNet ince-ayarlanarak adapte edilmiştir. Gerçekleştirilen deney sonuçlarına göre, önerilen yaklaşımın sınıflandırma performansı doğruluk, duyarlılık, hassasiyet ve f-ölçütü performans metrikleri için sırasıyla %53,8, %66,97, %37,54 ve %42,05 olarak ölçülmüştür. Ayrıca önerilen yaklaşımın tahminlerine dayalı gerçekleştirilen ticaret stratejisinin karlılık analizleri de yapılmış ve yatırımcılar tarafından sıklıkla kullanılan Göreceli Güç Endeksi ve Al ve Tut yatırım stratejileri ile karşılaştırılmıştır. 3 yıllık vade boyunca gerçekleştirilen piyasa benzetim sonuçlarına göre önerilen yaklaşım %51,77 kar oranıyla diğer yatırım stratejilerinden daha iyi sonuç vermiştir.


ATIFLAR
Atıf Yapan Eserler
Henüz Atıf Yapılmamıştır

KAYNAK GÖSTER
BibTex
KOPYALA
APA
KOPYALA
MLA
KOPYALA