
Journal of Mathematical Analysis and Modeling
Yazarlar: Laila Hashtamand
Konular:-
DOI:10.48185/jmam.v2i1.169
Anahtar Kelimeler:Anti,Eriodic boundary value problem,Fixed point theorem,Stability results
Özet: This research is devoted to studying a class of implicit fractional order differential equations ($\mathrm{FODEs}$) under anti-periodic boundary conditions ($\mathrm{APBCs}$). With the help of classical fixed point theory due to $\mathrm{Schauder}$ and $\mathrm{Banach}$, we derive some adequate results about the existence of at least one solution. Moreover, this manuscript discusses the concept of stability results including Ulam-Hyers (HU) stability, generalized Hyers-Ulam (GHU) stability, Hyers-Ulam Rassias (HUR) stability, and generalized Hyers-Ulam- Rassias (GHUR)stability. Finally, we give three examples to illustrate our results.