Asian Pacific Journal of Health Sciences

Asian Pacific Journal of Health Sciences

Hybrid Type-2 Diabetes Prediction Model Using SMOTE, K-means Clustering, PCA, and Logistic Regression

Yazarlar: Atul Kumar Ramotra, Vibhakar Mansotra

Cilt 8 , Sayı 3 , 2021 , Sayfalar 137-140

Konular:-

Anahtar Kelimeler:Classification,Clustering,Data mining,Diabetes prediction,Principal component analysis,Synthetic Minority Over,Ampling Technique

Özet: Early prediction of diabetes is very important as diabetes can turn out to be life threatening for the patients in the later stages. In this paper, a hybrid framework for the prediction of type-2 diabetes is developed. In the first step, imbalance dataset is balanced using Synthetic Minority Over-sampling Technique. Then, clustering is applied using k-means clustering technique and all the incorrectly clustered entries and outliers are removed. Principal component analysis is then used for dimensionality reduction of the dataset. In the final step, classification is done using logistic regression (LR), naïve Bayes, support vector machine, and k-nearest neighbors classification techniques. Experimental analysis shows that 98.96% of accuracy is achieved by the proposed hybrid model using LR. The results are validated using 10-fold cross-validation.


ATIFLAR
Atıf Yapan Eserler
Henüz Atıf Yapılmamıştır

KAYNAK GÖSTER
BibTex
KOPYALA
@article{2021, title={Hybrid Type-2 Diabetes Prediction Model Using SMOTE, K-means Clustering, PCA, and Logistic Regression}, volume={8}, number={137–140}, publisher={Asian Pacific Journal of Health Sciences}, author={Atul Kumar Ramotra,Vibhakar Mansotra}, year={2021} }
APA
KOPYALA
Atul Kumar Ramotra,Vibhakar Mansotra. (2021). Hybrid Type-2 Diabetes Prediction Model Using SMOTE, K-means Clustering, PCA, and Logistic Regression (Vol. 8). Vol. 8. Asian Pacific Journal of Health Sciences.
MLA
KOPYALA
Atul Kumar Ramotra,Vibhakar Mansotra. Hybrid Type-2 Diabetes Prediction Model Using SMOTE, K-Means Clustering, PCA, and Logistic Regression. no. 137–140, Asian Pacific Journal of Health Sciences, 2021.