Journal La Multiapp
Yazarlar: Oshin Ola Austin
Konular:-
DOI:10.37899/journallamultiapp.v2i3.383
Anahtar Kelimeler:Hybrid Power System Model,Simulation Model,Control Algorithm,Renewable Energy,Non Renewable Energy,Stability,Reliability,Power Supply
Özet: The Nigerian power problem resulted to incessant and erratic supply of electricity and this has destroyed many industrial processes in the country. It has reduced productivity and has increased unemployment rate in the country to over 50million (this figure is over 70% of Nigerian youths). This has led many of the youths in the country to crime. It has led to the deaths of many innocent people in the country. As of 2016, the electricity energy consumption in the world from the world fact book revealed that the average power per capita (watts per person) in the United States is 1,377 Watts. In Canada, it is 1704 Watts per person and in South Africa; it is 445 Watts per person and in Australia, average power per capita (watts per person) is as high as 1,112 Watts. Whereas, the average electricity consumed in watts per person in Nigeria is just 14 Watts. Unfortunately, this has put the country in a rank of 189 out of 219 countries estimated. In this research work, a Hybrid Electric Power System (HEPS) which comprises Hydro Electric Power Plant (HEPP) and Diesel Generator (DG) was modelled and a control algorithm was established to improve the performance of the system. Hybrid power system mathematical and Simulink models were developed. The output power of the developed Simulink model was be optimized using optimum power point optimization techniques and control algorithms. Simulink models of the two components of the Hybrid Electric Power System were produced using MATLAB/Simulink software. The develop Simulink models was interconnected and final model was developed. The results obtained revealed that the problems associated with conventional methods of power generation was overcomed by the development of this renewable and non-renewable energy resources Hybrid Electric Power System (HEPS) models.