Uluslararası Fen Araştırmalarında Yenilikçi Yaklaşımlar Dergisi
Yazarlar: Kaissa Boudıeb, Sabrina Ait Slimane - Ait Kaki, Hakima Oulebsir-Mohandkaci , Amel Bennacer
Konular:-
DOI:10.29329/ijiasr.2018.173.2
Anahtar Kelimeler:Chamaemelum nobile,Matricaria chamomilla - Phytochemical Screening - Polyphenols - Antimicrobial activity
Özet: Objective of the study was to evaluate the phytochemical characterization and antimicrobial effectiveness of two medicinal plants belonging to the Asteraceae family, growing spontaneously in the region of Boumerdes (Northeast Algeria) namely Chamaemelum nobile (L.) All and Matricaria chamomilla (L.). For this purpose, it was proposed to optimize the extraction parameters of the phenolic compounds of the aerial parts of two chosen species. The first step was intended to study the effect of different extraction solvents (water, chloroform and methanol) on the contents of different metabolites of these species. The qualitative screening of the aerial part of chamomile allowed to highlight different families of chemical compounds namely; flavonoids, total tannins, condensed tannins, gallic tannins, alkaloids, saponosides, glucosides, mucilages and total absence of anthocyanins and starch. This was confirmed by a quantitative analysis based on the determination of total phenolic compounds by spectrophotometry in the presence of the Folin-Ciocalteu reagent determined from the calibration curve of gallic acid. The results showed that the water was the best extraction solvent. At the second stage of our study, antimicrobial activity of the extracts was determined on six microbial strains such as Staphylococcus aureus, Bacillus thuringiensis, Escherichia coli and Fusarium sp., according to the disk diffusion method, and gave zones of inhibition ranging from 7 to 15 mm. Thus, the extracts had a moderately inhibitory activity and have reacted positively on at least one of the microbial strains tested with the exception of the fungal flora. However, the methanolic extract of M. chamomilla revealed a strong activity against to Pseudomonas sp. with an inhibition zone estimated at 22.5 mm.