Maltepe Journal of Mathematics

Maltepe Journal of Mathematics

Lacunary Statistical $p$-Quasi Cauchy Sequences

Yazarlar: Şebnem YILDIZ

Cilt 1 , Sayı 1 , 2019 , Sayfalar 9 - 17

Konular:Matematik

Anahtar Kelimeler:Lacunary statistical convergence,Summability,Quasi-Cauchy sequences,Continuity

Özet: In this paper, we introduce a concept of lacunary statistically $p$-quasi-Cauchyness of a real sequence in the sense that a sequence $(\alpha_{k})$ is lacunary statistically $p$-quasi-Cauchy if $\lim_{r\rightarrow\infty}\frac{1}{h_{r}}|\{k\in I_{r}: |\alpha_{k+p}-\alpha_{k}|\geq{\varepsilon}\}|=0$ for each $\varepsilon>0$. A function $f$ is called lacunary statistically $p$-ward continuous on a subset $A$ of the set of real numbers $\mathbb{R}$ if it preserves lacunary statistically $p$-quasi-Cauchy sequences, i.e. the sequence $(f(\alpha_{n}))$ is lacunary statistically $p$-quasi-Cauchy whenever $\boldsymbol\alpha=(\alpha_{n})$ is a lacunary statistically $p$-quasi-Cauchy sequence of points in $A$. It turns out that a real valued function $f$ is uniformly continuous on a bounded subset $A$ of $\mathbb{R}$ if there exists a positive integer $p$ such that $f$ preserves lacunary statistically $p$-quasi-Cauchy sequences of points in $A$.


ATIFLAR
Atıf Yapan Eserler
Henüz Atıf Yapılmamıştır

KAYNAK GÖSTER
BibTex
KOPYALA
@article{2019, title={Lacunary Statistical $p$-Quasi Cauchy Sequences}, volume={1}, number={1}, publisher={Maltepe Journal of Mathematics}, author={Şebnem YILDIZ}, year={2019}, pages={9–17} }
APA
KOPYALA
Şebnem YILDIZ. (2019). Lacunary Statistical $p$-Quasi Cauchy Sequences (Vol. 1, pp. 9–17). Vol. 1, pp. 9–17. Maltepe Journal of Mathematics.
MLA
KOPYALA
Şebnem YILDIZ. Lacunary Statistical $p$-Quasi Cauchy Sequences. no. 1, Maltepe Journal of Mathematics, 2019, pp. 9–17.