European Endodontic Journal
Yazarlar: Nadine Freifrau Von Maltzahn, Nico Sascha Stump
Konular:-
DOI:10.14744/eej.2019.83997
Anahtar Kelimeler: Antibacterial,Antibiofilm,Biofilm,Biofilm lysis,Biofilm detachment,Cupral®,Microbiology,Oral infection,Treatment
Özet: This study aimed to assess the efficacy of Cupral®, a Ca(OH)2 and Cu2+ based materials used in endodontics, against biofilms of the oral species Streptococcus oralis, Streptococcus gordonii and Aggregatibacter actinomycetemcomitans at different maturation stages. Methods: Biofilms of the bacterial target species were grown in brain heart infusion (BHI) medium for 1 and 5 days on titanium disks (titanium, grade 4) to collect microbial communities at different stages of biofilm maturation. Biofilms were subjected to different Cupral® concentrations (4-, 15- and 50-fold dilution) to assess the antimicrobial- and biofilm dissolving effect. 0.2% chlorhexidine gluconate (CHX) solution was used as a positive control. Biovolume and antibacterial efficacy were analyzed by live/dead staining in combination with confocal laser scanning microscopy (CLSM) to quantify biofilm detachment and antibacterial efficacy. Results: All tested Cupral® concentration showed a strong antibacterial effect on tested bacterial species at all biofilm maturation stages. Efficacy of biofilms detachment was concentration dependent, i.e. higher Cupral® concentrations generally led to increased biofilm detachment. The antibacterial efficacy of tested Cupral® concentration was at least equal to CHX treatment (P=0.03). Conclusion: Cupral® shows a strong anti-biofilm efficacy and may be applied for oral biofilm treatment and control in dental disciplines other than endodontics.